Skip to main content
Computer Science
CS
Computer Science
Study
Prospective Students
Current Students
Research
Research Areas
Research Groups
People
All People
Faculty
Affiliate Faculty
Instructional Faculty
Research Scientists
Research Staff
Postdoctoral Fellows
Administrative Staff
Alumni
Students
News
Events
About
CEMSE Division
Apply
model interpretability
Explainability and Efficiency in Spatio-Temporal Models: Applications to Traffic Forecasting
Xiaochuan Gou, Ph.D. Student, Computer Science
Jul 6, 15:00
-
18:00
B5 L5 R5209
traffic forecasting
Graph Neural Networks
model interpretability
This dissertation addresses key challenges in deep learning-based traffic forecasting, including computational efficiency, model interpretability, and data limitations, despite recent progress in spatio-temporal modeling techniques.