Skip to main content
Computer Science
CS
Computer Science
Study
Prospective Students
Current Students
Research
Research Areas
Research Groups
People
All People
Faculty
Affiliate Faculty
Instructional Faculty
Research Scientists
Research Staff
Postdoctoral Fellows
Administrative Staff
Alumni
Students
News
Events
About
CEMSE Division
Apply
texture synthesis
Latent Space Manipulation of GANs for Seamless Image Compositing
Anna Fruehstueck, Ph.D., Computer Science
Apr 17, 17:30
-
18:30
B5 L5 R5220
Generative Adversarial Networks
image synthesis
texture synthesis
Generative Adversarial Networks (GANs) are a very successful method for high-quality image synthesis and are a powerful tool to generate realistic images by learning their visual properties from a dataset of exemplars. However, the controllability of the generator output still poses many challenges. In this thesis, we propose several methods for achieving larger and/or higher visual quality in GAN outputs by combining latent space manipulations with image compositing operations